metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing-Hua Wang

Department of Chemistry & Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China

Correspondence e-mail: wqh_1974@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.026 Å R factor = 0.058 wR factor = 0.158 Data-to-parameter ratio = 23.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis(tetraethylammonium) tetrakis(tetrathiotungstenio)distannate(II)

In the title mixed-metal complex, $(Et_4N)_4[Sn_2(WS_4)_4]$, the Sn atoms are sixfold coordinated by S atoms of the tetrathiotungstate anions, forming two SnS₆ octahedra sharing a common edge. The anion is centrosymmetric.

Comment

The synthetic and structural chemistry of heterometallic Mo(W)/M/S clusters has attracted considerable attention for their uses as models for the active sites in a variety of metalloenzymes and their potential application as functional materials in several fields (Huang *et al.*, 1996; Riaz *et al.*, 1991). Investigating the structural characteristics of Mo(W)/M/S clusters may help us to understand the structure of the active center of nitrogenase. Here we report the structure of a tin-tungsten sulfido mixed-metal complex, (I).

The structure of (I) consists of discrete cations and centrosymmetric anions (Fig. 1). The structure of the anion is similar to that found in $[(C_6H_5)_4P]_4[Sn_2(WS_4)_4]$ (Müller *et al.*, 1976), which contains two highly distorted SnS_6 octahedra sharing a common edge. These octahedra are bonded to the four non-equivalent WS₄ tetrahedra via common edges. There are two modes of coordination of the ligands: two of the WS_4^{2-} ions are coordinated as bidentate ligands to Sn and possess two free S atoms, and the other WS_4^{2-} ions coordinate as tridentate ligands with one free S atom and one triply bonded sulfur atom. The $W \cdots Sn$ and $Sn \cdots Sn$ distances are 3.469 (6)–3.679 (6) and 4.489 (7) Å, respectively, indicating that there are no significant metal-metal interactions. The four-membered WS₂Sn and SnS₂Sn rings are planar. The distance from Sn to the doubly bonded S atoms are shorter than those to the triply bonded S atoms.

Experimental

© 2006 International Union of Crystallography All rights reserved

hy 0.5 mmol SnCl₂, 1 mmol (NH₄)₂WS₄ and 1 mmol Et₄NCl were dissolved in 10 ml of DMF, the mixture was then stirred for 10 min

Received 21 June 2006

Accepted 6 July 2006.

and filtered. The filtrate was layered with methanol. Orange crystals of (I) were obtained after one day (yield 0.39 g, 77%).

Z = 2

 $D_x = 2.110 \text{ Mg m}^{-3}$ Mo *K* α radiation

 $0.20 \times 0.10 \times 0.10$ mm

3 standard reflections

frequency: 60 min

intensity decay: 0.5%

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.1158P)^2]$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 2.69 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -3.29 \text{ e} \text{ Å}^{-3}$

where $P = (F_o^2 + 2F_c^2)/3$

5260 reflections with $I > 2\sigma(I)$

 $\mu = 8.59 \text{ mm}^{-1}$

T = 292 (2) K

Prism, red

 $R_{\rm int} = 0.084$

 $\theta_{\rm max} = 26.0^{\circ}$

Crystal data

 $\begin{array}{l} (\mathrm{C_8H_{20}N})_4[\mathrm{Sn_2(WS_4)_4}] \\ M_r = 2006.74 \\ \mathrm{Monoclinic}, P2_1/c \\ a = 12.507 \ (2) \ \mathrm{\AA} \\ b = 13.188 \ (3) \ \mathrm{\AA} \\ c = 19.937 \ (6) \ \mathrm{\AA} \\ \beta = 106.19 \ (5)^\circ \\ V = 3157.7 \ (14) \ \mathrm{\AA}^3 \end{array}$

Data collection

Enraf Nonius CAD4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.368, T_{max} = 0.432$ 6470 measured reflections 6188 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.158$ S = 1.036188 reflections 262 parameters

Table 1

Selected bond lengths (Å).

Sn-S6	2.635 (3)	W1-S1	2.199 (3)
Sn-S7	2.790 (3)	W1-S3	2.206 (2)
Sn-S1	2.844 (3)	W2-S8	2.146 (3)
Sn-S4 ⁱ	2.893 (4)	W2-S5	2.156 (3)
W1-S2	2.144 (3)	W2-S7	2.222 (3)
W1-S4	2.190 (3)	W2-S6	2.236 (2)

Symmetry code: (i) -x, -y + 1, -z + 1.

H atoms were positioned geometrically and refined in riding mode $[C-H = 0.96 \text{ Å}, U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $C-H = 0.97 \text{ Å}, U_{iso}(H) = 1.2U_{eq}(C)$ for others]. The highest residual electron density peak is 0.90 Å from W1 and the deepest hole is 0.89 Å from W2.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software;

Figure 1

View of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code for SnA and unlabelled atoms: -x, 1 - y, 1 - z.]

program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: ASP (Chen, 2004); software used to prepare material for publication: *SHELXL97*.

Financial support was provided by the Education Bureau of Fujian Province, China (JA04246).

References

- Chen, J. T. (2004). ASP. Version 4.3. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China.
- Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Huang, Q., Wu, X. T., Wang, Q. M., Sheng, T. L. & Lu, J. X. (1996). Angew. Chem. Int. Ed. Engl. 35, 868–870.
- Müller, A., Paulat, I., Krebs, B. & Dornfeld, H. (1976). Angew. Chem. Int. Ed. Engl. 15, 633.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Riaz, U., Curnow, O. & Curtis, M. D. (1991). J. Am. Chem. Soc. 113, 1416–1423.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.