Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qing-Hua Wang

Department of Chemistry \& Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China

Correspondence e-mail:
wqh_1974@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.026 \AA$
R factor $=0.058$
$w R$ factor $=0.158$
Data-to-parameter ratio $=23.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetrakis(tetraethylammonium) tetrakis(tetrathiotungstenio)distannate(II)

In the title mixed-metal complex, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{4}\left[\mathrm{Sn}_{2}\left(\mathrm{WS}_{4}\right)_{4}\right]$, the Sn atoms are sixfold coordinated by S atoms of the tetrathiotungstate anions, forming two SnS_{6} octahedra sharing a common edge. The anion is centrosymmetric.

Comment

The synthetic and structural chemistry of heterometallic $\mathrm{Mo}(\mathrm{W}) / M / \mathrm{S}$ clusters has attracted considerable attention for their uses as models for the active sites in a variety of metalloenzymes and their potential application as functional materials in several fields (Huang et al., 1996; Riaz et al., 1991). Investigating the structural characteristics of $\mathrm{Mo}(\mathrm{W}) / M / \mathrm{S}$ clusters may help us to understand the structure of the active center of nitrogenase. Here we report the structure of a tintungsten sulfido mixed-metal complex, (I).

The structure of (I) consists of discrete cations and centrosymmetric anions (Fig. 1). The structure of the anion is similar to that found in $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}\right]_{4}\left[\mathrm{Sn}_{2}\left(\mathrm{WS}_{4}\right)_{4}\right]$ (Müller et al., 1976), which contains two highly distorted SnS_{6} octahedra sharing a common edge. These octahedra are bonded to the four non-equivalent WS_{4} tetrahedra via common edges. There are two modes of coordination of the ligands: two of the $\mathrm{WS}_{4}{ }^{2-}$ ions are coordinated as bidentate ligands to Sn and possess two free S atoms, and the other $\mathrm{WS}_{4}{ }^{2-}$ ions coordinate as tridentate ligands with one free S atom and one triply bonded sulfur atom. The $\mathrm{W} \cdots \mathrm{Sn}$ and $\mathrm{Sn} \cdots \mathrm{Sn}$ distances are 3.469 (6)-3.679 (6) and 4.489 (7) A, respectively, indicating that there are no significant metal-metal interactions. The four-membered $\mathrm{WS}_{2} \mathrm{Sn}$ and $\mathrm{SnS}_{2} \mathrm{Sn}$ rings are planar. The distance from Sn to the doubly bonded S atoms are shorter than those to the triply bonded S atoms.

Experimental

$0.5 \mathrm{mmol} \mathrm{SnCl}_{2}, 1 \mathrm{mmol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{WS}_{4}$ and $1 \mathrm{mmol} \mathrm{Et}_{4} \mathrm{NCl}$ were dissolved in 10 ml of DMF, the mixture was then stirred for 10 min

Received 21 June 2006
Accepted 6 July 2006.
and filtered. The filtrate was layered with methanol. Orange crystals of (I) were obtained after one day (yield $0.39 \mathrm{~g}, 77 \%$).

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)_{4}\left[\mathrm{Sn}_{2}\left(\mathrm{WS}_{4}\right)_{4}\right]$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.110 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=8.59 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Prism, red } \\
& 0.20 \times 0.10 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf Nonius CAD4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.368, T_{\text {max }}=0.432$
6470 measured reflections
6188 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.158$
$S=1.03$
6188 reflections
262 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1158 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$ 。
$\Delta \rho_{\text {max }}=2.69 \mathrm{e}^{-3}$
$\Delta \rho_{\text {max }}=-3.29 \mathrm{e}_{\text {min }}=-3$

Table 1
Selected bond lengths (\AA).

Sn-S6	$2.635(3)$	W1-S1	$2.199(3)$
$\mathrm{Sn}-\mathrm{S} 7$	$2.790(3)$	W1-S3	$2.206(2)$
$\mathrm{Sn}-\mathrm{S} 1$	$2.844(3)$	W2-S8	$2.146(3)$
$\mathrm{Sn}-\mathrm{S} 4^{\mathrm{i}}$	$2.893(4)$	W2-S5	$2.156(3)$
W1-S2	$2.144(3)$	W2-S7	$2.222(3)$
W1-S4	$2.190(3)$	W2-S6	$2.236(2)$

Symmetry code: (i) $-x,-y+1,-z+1$.
H atoms were positioned geometrically and refined in riding mode $\left[\mathrm{C}-\mathrm{H}=0.96 \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl H atoms and $\mathrm{C}-\mathrm{H}=$ $0.97 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for others]. The highest residual electron density peak is $0.90 \AA$ from W1 and the deepest hole is $0.89 \AA$ from W2.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software;

Figure 1

View of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code for SnA and unlabelled atoms: $-x$, $1-y, 1-z$.]
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ASP (Chen, 2004); software used to prepare material for publication: SHELXL97.

Financial support was provided by the Education Bureau of Fujian Province, China (JA04246).

References

Chen, J. T. (2004). ASP. Version 4.3. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Huang, Q., Wu, X. T., Wang, Q. M., Sheng, T. L. \& Lu, J. X. (1996). Angew. Chem. Int. Ed. Engl. 35, 868-870.
Müller, A., Paulat, I., Krebs, B. \& Dornfeld, H. (1976). Angew. Chem. Int. Ed. Engl. 15, 633.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Riaz, U., Curnow, O. \& Curtis, M. D. (1991). J. Am. Chem. Soc. 113, 1416-1423.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

